2020-10-29 14:13:14
在为运动控制应用选择编码器时、需要在众多产品中作出选择。负责传感器的工程师必须确定其应用需要的是增量编码器、值编码器,还是换相编码器。一旦确定需要的类型,他们就需要考虑一长串其他参数,例如:分辨率、安装方式、电机轴尺寸等等。此外,有时会忽略需要的编码器输出信号类型。有时答案并不明确,所以在这篇文章中,我们会审视几乎所有编码器中都有的三种主要输出类型:集电极开路、推挽式和差分线路驱动器。这三种输出类型描述了数字通信的物理层面。
无论是增量编码器的正交输出、换相编码器的电机极输出,还是使用特定协议的串行接口,所有这些输出信号都是数字信号,且都具有高低状态。也就是说,一个5 V 编码器的信号会一直在0 V(对地)的低压(或二进制0),与5 V 的高压(或二进制1)之间切换。在本文中,我们将重点了解输出基本方波的增量编码器输出。
岢岚SP38/6-100BZ-8-30FG2旋转编码器
其中模拟量(4~20mA)输出使用比较方便,但精度有所牺牲。旋转光电编码器哪家价格质量好?建议选择温州恩广电气有限公司,是一家从事智能仪器仪表开发、生产、销售的企业。恩广在角位移测量、旋变数字转换、及称重测力方面的产品处于同行业的水平,在角位移测量方面:首推其高可靠性,利用自整角机和旋转变压器作为角位移检测元件,开发生产出与之配套的一系列角度传感器、旋变数字转换器、角位变送器、及角位显示器,解决了其它类角位移测量存在的可靠性问题。在称重测力方面:独创多项先进实用技术,自动标定、非线性修正技术,方便了用户使用,满足了现场快速调试的功能要求,让您的称重系统标定成功。编码器是一种用于运动控制的传感器。
用2n表示。可通过位置的转换变换复数的位有。(2)格雷码转换位置时,只有1位发生变化的代码。旋转式编码器的代码板为格雷码。(3)余格雷码是用格雷码表示720等2n以外的分辨率时的代码。格雷码的性质为:将格雷码的上位从“0”切换至“1”时起,当数值小的一方和数值大的一方分别只取相同区域时,在该范围内从代码的结束与开始进行转换时,只改变1位信号。根据这种性质,可按格雷码进行任意的偶数分辨率设定。但此时,代码的起始不是从0位置开始,而是从中途的代码开始,所以实际使用时,需要进行代码转换处理,转换至由0位置起的代码后再使用。二进10进制代码(BinaryCodedDecimalCode)。是分别用2进符号表示10进制各位的代。
对于光学式旋转编码器,通常与旋转编码器内部的光栅的槽数相同(也可在电路上使输出脉冲数增加到槽数的2倍4倍)。分辨率分辨率表示旋转编码器的主轴旋转一周,读出位置数据的等分数。值型不以脉冲形式输出,而以代码形式表示当前主轴位置(角度)。与增量型不同,相当于增量型的“输出脉冲/转”。光栅光学式旋转编码器,其光栅有金属和玻璃两种。如是金属制的,开有通光孔槽;如是玻璃制的,是在玻璃表面涂了一层遮光膜,在此上面没有透明线条(槽)。槽数少的场合,可在金属圆盘上用冲床加工或腐蚀法开槽。在耐冲击型编码器上使用了金属的光栅,它与金属制的光栅相比不耐冲击,因此在使用上请注意,不要将冲击直接施加于编码器上。响应频率是在1秒内能响应的脉冲数(例:响应频率为2KH。
则各楼层平层点的脉冲数为:1楼为0;2楼为4000;3楼为8000;4楼为12000。设换速点距楼层为1.6米,则各楼层换速点的脉冲数为:上升:1楼至2楼为2400,2楼至3楼为6400,3楼至4楼为10400;下降:4楼至3楼为9600,3楼至2楼为5600,旋转编码器是测量转速的装置,可将轴的角du位移.速度机械量转换成相应的电泳冲量输出.,一路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组A/B相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。因此可以用控制上显示出转速的大小与方向,从而去控制你所需要的转速。编码器是以数字化信息将角度、长度的信息以编码du的方式输出的传感。
要准确测量零位脉冲,不论旋转方向,零位脉冲均被作为两个通道的高位组合输出。由于通道之间的相位差的存在,零位脉冲仅为脉冲长度的一半。预警信号有的编码器还有报警信号输出,可以对电源故障,发光二极管故障进行报警,以便用户及时更换编码器。基本的输出方式,抗干扰能力差,输出有效距离短。在旋转编码器中用于增量型编码器输出,现已较少使用。组合了PNP和NPN两种输出,对称的正负信号输出,可以方便地驳接单端接收,抗干扰能力强,(差分接收);传输距离100m。传输介质:双绞线(差分接收);所有导线,光纤,无线电(单端接收)。高频特性:好其它的接口方式还有RS232(C),RS485以及编码器常用的SSI,各种现场总路线输出脉冲数/转旋转编码器转一圈所输出的脉冲数。
E69-C06B型耦合器,紧固力矩2.5kgf·cm;E69B-Cl0B型耦合器,紧固力矩4.5kfg·cm。第四步:连接电源输出线。配线时必须关断电源。第五步:检查电源投入使用。旋转编码器的安装注意事项1.采用标准耦合器时,2.连接带及齿轮结合时,先用别的轴承支住,再将旋转编码器和耦合器结合起来。3.齿轮连接时,注意勿使轴受到过大荷重。4.用螺钉紧固旋转编码器时,应用5kfg·cm左右的紧固力矩。5.固定本体进行配线时,不要用大于3kg的力量拉线。6.可逆旋转使用时,应注意本体的安装方向和加减法方向。7.把设置的装置原点和编码器的Z相对准时,必须边确定Z相输出边安装耦合器。8.使用时勿使本体上粘水滴和油。
市面上大多数旋转编码器都采用集电极开路输出。这就意味着可以将数字信号的对地输出压低,而在认为信号电平高时,只需断开输出的连接即可。这种输出称为集电极开路,是因为输入信号电平高时,晶体管上的集电极引脚就会保持开路或断开。要与该设备连接,需用一个外部电阻将集电极“提升”至所需的高电压电平。这是一种有用的输出类型,可帮助工程师尝试与具有不同电压电平的系统连接。可以提升集电极的电压电平,以满足低于或高于编码器工作电压的条件。
然而,该连接的劣势常常掩盖住改变编码器电压电平的功能。在集电极开路编码器上加装外部电阻并不是非常困难,许多现成的控制器已经内置了外部电阻,但这些外部电阻的运行需要消耗电流,且会影响输出信号,从而随着频率改变信号特性。让我们重新考虑增量编码器的方波,只是这次我们将其调整到非常接近其中一种状态变化。我们希望数字信号能够立即实现从低到高的转换,但我们当然明白一切都需要时间。我们将这一时间延迟称为转换速率。
A相、B相用电气角表示为90°的相位差。CW即顺时针旋转(ClockWise)的方向。从轴侧面观察为向右旋转,在这个旋转方向中,通常增量型为A相比B相先进行相位输出,型为代码增加方向。CW方向反旋转时为CCW(CounterClockWise)输出功效比使轴以固定速旋转时输出的平均脉冲周期时间与1周期的H位时间的比。响应频率响应信号所得到的信号频率。上升时间、下降时间输出脉冲的10~90%的时间。输出电路(1)开路集电极输出以输出电路的晶体管发射极为共通型,以集电极为开放式的输出电路。(2)电压输出以输出电路的晶体管的发射极为共通型,在集电极与电源间插入电阻,并输出因电压而变化的集电极的输出电。
在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。比如,打印机扫描仪的定位就是用的增量式编码器原理,每次开机,我们都能听到噼哩啪啦的一阵响,它在找参考零点,然后才工作。这样的方法对有些工控项目比较麻烦,甚至不允许开机找零(开机后就要知道准确位置),于是就有了编码器的出现。型旋转光电编码器,因其每一个位置、抗干扰、无需掉电记忆,已经越来越广泛地应用于各种工业系统中的角度、长度测量和定位控制。工作原理由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度。
(3)线路驱动器输出本输出方式采用高速、长距离输送用的IC方式,是依据RS422-A规格的数据传送方式。信号以差动的2信号输出,因此抗干扰能力强。接受线路驱动器输出的信号时,可使用称为线路接(4)补码输出输出上具备NPN和PNP2种输出晶体管的输出电路。根据输出信号的「H」、「L」,2个输出晶体管交互进行「ON」、「OFF」动作。使用时,请在正极电源、OV上进行上拉、下降后再使用。补码输出,包括输出电流的流出、流入两个动作,其特征为信号的上、下降速度快,可延长代码的长距离。可与开路集电极输入机器(NPN、PNP)连接。启动转矩旋转式编码器的轴旋转启动时必须的旋转力矩。通常旋转时,一般取比本值低的。
能够丈量从几个μ到几十几百米的间隔,n个工位,只需处理一个旋转编码器(长春编码器)的安全装置疑问,能够防止许多挨近开关、光电开关在现场机械装置费事,简单被撞坏和遭高温、水气困惑等疑问。由所以光电码盘,无机械损耗,只需装置方位,其使用寿命往往很长。多功能化,除了定位,还能够远传当时方位,换算运动速度,关于变频器,步进电机等的使用尤为重要。经济化,关于多个操控工位,只需一个旋转编码器的本钱,以及更首要的装置、保护、损耗本钱下降,使用寿命增加,其经济化逐步突显出来。旋转编码器分为增量型编码器型编码器两种,两者各有优缺点,增量型编码器比较通用,大多场合都用这种。从价格看,一般来说型编码器要贵得多。而且型编码器有量程范。
将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。信号输出信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输。
但特殊型号也可实现多圈测量。正弦波正弦波编码器也属于增量式编码器,主要的区别在于输出信号是正弦波模拟量信号,而不是数字量信号。它的出现主要是为了满足电气领域的需要-用作电动机的反馈检测元件。在与其它系统相比的基础上,人们需要提高动态特性时可以采用这种编码器。为了保证良好的电机控制性能,编码器的反馈信号必须能够提供大量的脉冲,尤其是在转速很低的时候,采用传统的增量式编码器产生大量的脉冲,从许多方面来看都有问题,当电机高速旋转(6000rpm)时,传输和处理数字信号是困难的。在这种情况下,处理给伺服电机的信号所需带宽(例如编码器每转脉冲为10000)将很容易地超过MHz门限;而另一方面采用模拟信号大大减少了上述麻。
在集电极开路输出中,由于电阻在RC时序电路中充当R,转换速率受提升电阻的电阻值影响。如果转换速率降低,编码器的运行速度也会降低(和/或增量编码器的分辨率也会降低)。使用较低值的电阻(提升较强)可以提高转换速率,但这种折衷会让系统消耗更多功率,因为当信号较低时,提升电阻必须通过系统消耗更多电流。
用于基准点定位。增量型编码器的输出信号有正弦波,方波(TTL对称差分驱动、HTL推挽式),集电极开路(PNP、NPN),推拉式等多种形式。增量型编码器的优点是原理构造简单,机械平均寿命可在几万小时以上,可靠性高。增量型编码器的缺点是存在零点累计误差,抗干扰较差,接收设备的停机需断电记忆,开机应找零或参考位,无法输出轴转动的位置信息等问题。这些问题如选用型编码器可以解决。型旋转编码器型旋转编码器光码盘上有许多圈光通道刻线,每圈刻线依次为2线、4线、8线、16线……。这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的的2进制编码(或格雷码),这就称为n位型编码。
旋转编码器是用